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SUMMARY 
This paper deals with the numerical simulation of fluid dynamics using the boundary4omain integral 
technique (BEM). The steady 2 D  diffusion-convection equations are discussed and applied to  solve the 
plane Navier-Stokes equations. A vorticity-velocity formulation has been used. The numerical scheme was 
tested on the well-known 'driven cavity' problem. Results for Re = 1OOO and 10,OOO are compared with 
benchmark solutions. There are also results for Re = 15,OOO but they have only qualitative value. The 
purpose was to  show the stability and robustness of the method even when the grid is relatively coarse. 
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1. INTRODUCTION 

Very rapid advances in computing have enabled the development of numerical fluid dynamics.'4 
Fluid dynamics is a research field full of non-linearities, strong geometrical non-regularities and 
singularities due to boundary conditions. The governing equations of transport phenomena are 
in general diffusivityanvectivity partial differential equations-the characteristics of which 
change strongly from point to point of the flow field owing to different local Reynolds number 
values-physically representing the relationship between diffusion and convection of individual 
parameters of state. Thus it is not possible to discriminate pure elliptic, parabolic and hyperbolic 
equations, since they are of mixed type. 

The Navier-Stokes equations represent a system of non-linear partial differential equations 
of viscous Newtonian fluid motion. They provide a mathematical model of physical conservation 
laws of mass, energy, species and momentum for a control volume-the Eulerian case.' 
Governing equations may be written for primitive physical variables or for dependent ones. F o r  
selection of the best formulation it is of great importance which numerical technique is to be 
applied. There are a variety of velocity-pressure, vorticity-streamfunction, velocity-vorticity and 
penalty formulations, etc. available. In particular, the velocity-vorticity approach has proved 
successful with the boundary element The advantage of the velocity-vorticity 
formulation lies in the numerical separation of the kinematics and kinetics of the flow from the 
pressure computation, which is done later by the solution of a linear system of equations for 
known velocity and vorticity fields. 

2. NAVIER-STOKES EQUATIONS 

The partial differential equation set governing the transport phenomena in steady incompressible 
fluid flow represents the basic conservation balances of mass and momentum, written below in 
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an indicia1 notation form for a right-handed Cartesian co-ordinate system: 

avi aaij ' P  a T i j  
PO, - = -- + pf, = - - + - + pf,, axj ax, axi ax j  

where I+ is the ith instantaneous velocity component, xi is the ith co-ordinate, ui, is the stress 
tensor, p is the pressure, T i j  is the deviatoric stress tensor, f,, stands for the body force, e.g. the 
gravity gi ,  and p is the fluid mass density. 

Let us obey a simple linear gradient type of constitutive hypothesis Newton law describing 
the relation between the stress tensor 'lii and the strain tensor E i j :  

T i j  = 2V$j, (3) 

where q is the fluid dynamic viscosity. 
Substituting the constitutive hypothesis equation (3) into the basic conservation law equation 

(2), the steady non-linear Navier-Stokes equation set can be derived, expressing the momentum 
transport phenomena in an incompressible Newtonian fluid flow: 

where v = q/p is the kinematic viscosity and P = p - pgjr, is the modified pressure. If we assume 
that the material properties are constant, which is a reasonable assumption in many engineering 
problems, the Navier-Stokes equation set simplifies considerably and the following set of 
equations can be written: 

avj 
- = 0, 
ax, 

The above equation set for constant material properties represents a closed system of equations 
for the determination of velocity qi, t )  and pressure Hi, t )  fields, subject to appropriate boundary 
conditions of velocity. 

2.1. Vorticity transport equation 

Introducing the vorticity (scalar in 2D) 

the fluid motion computation scheme is partitioned into its kinematic and kinetic aspects. The 
kinematics is described by the continuity equation (6) and the vorticity definition (8). expressing 
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the relationship between the vorticity and velocity fields. The kinetics is governed by the vorticity 
transport equation obtained as the curl of the momentum equation (7) and describes the 
redistribution of the vorticity in fluid flow. 

Using some basic vector identities in the convective term and taking the curl of both sides of 
equation (7), the steady 2D vorticity transport equation can be obtained as 

The essential reason for considering the fluid motion in terms of the vorticity distribution is 
that the vorticity vector 6 is a solenoidal vector and so cannot be produced or destroyed in the 
interior of homogeneous media under normal conditions. It is produced only at the solid 
boundaries owing to the viscous effects. The net viscous force on an incompressible fluid particle 
is given by the local vorticity gradients. For a low-viscosity fluid flow the net viscous force is 
significant only at the point in the fluid flow of large vorticity gradients. The vorticity transport 
equation (9) is a highly non-linear PDE owing to the products of velocity and vorticity in the 
convective term and the velocity is kinematically dependent on the vorticity. Because of this 
inherent non- linearity, the kinetics of general viscous motion, particularly for high-Reynolds- 
number flows, represents a greater numerical effort than that required by the kinematics. 

3. INTEGRAL REPRESENTATION OF NAVlER-STOKES EQUATIONS 

The vorticity transport equation describes the development of the vorticity field in fluid flow. 
It is an elliptic equation representing a boundary value problem. These boundary vorticities 
have to be computed in the kinematics given by the elliptic equation expressing the compatibility 
of the velocity and vorticity fields. Since the equation represents a boundary value problem, 
velocity boundary conditions have to be specified. Accurate computation of the boundary 
vorticity values is the crucial part of the overall accuracy of the numerical scheme. 

3.1. Vorticity transport equation-kinetics 

the vorticity obeys a non-homogeneous elliptic equation' 
Considering the spatial vorticity transfer process in integral form, one has to assume that 

a 2 0  

axlax, 
V -  + b = O  i n Q  

subject to the corresponding boundary conditions of the first and second kinds, 

o=fh o n r , ,  

while the pseudo body forces b include the convective term from equation (9), 

b = - - ,  a(ujo) 
8% 
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yielding the integral formulation 

u* dT - WU,U* d r  + 

Equation (13) expresses the steady 2D vorticity transport in the boundary-domain integral 
formulation, where u* = u*(<, s) = (l/2n)ln[ro/r(<, s)] is the elliptic 2D fundamental solution of 
the equation V2u*(t, s) + S(<, s) = 0 which represents the influence of a unit source at point c 
on the potential field at point s. The vorticity diffusion is described by the first two boundary 
integrals, while the third boundary integral gives the terms representing the convective flux 
across the boundary, which vanishes for u, = 0. The domain integral gives the influence of the 
transport effects in the domain due to the convection. 

3.2. Vector potential equation-kinematics 

theorem for vectors in the vector form Poisson equation for the vector potential (8 = 9 x '@,9-'0 

The boundary4omain integral statement for the kinematics can be obtained using Green's 

v26 + 6 = 0, (14) 

yielding the integral representation 

For the plane case where the vorticity vector 6 has only, one component (6 = mi), the vector 
integral equation (15) represents two scalar equations for individual x and y Cartesian co- 
ordinate directions. The statement is completely equivalent to the continuity equation and 
vorticity definition, expressing the kinematics of incompressible fluid flow in integral form. 
Boundary velocity conditions are included in the boundary integrals, while the domain integral 
gives the contribution of the vorticity field to the development of the velocity field. Notice that 
for irrotational flow the domain integral vanishes and the kinematics of the potential fluid flow 
is given by the boundary integrals only. The integral equation enables the explicit computation 
of the velocity components in the interior of the domain. Boundary vorticity values are also 
given in integral form within the domain integral, thus eliminating the need to use some 
approximate formula based on Taylor series expansion for determining the vorticity on the 
boundary, which would introduce additional error into the numerical scheme employed. The 
computation of the boundary vorticities in the frame of classical domain-type numerical 
techniques, i.e. finite elements and finite differences, is the most critical part of the numerical 
scheme, since it controls the overall quality of the numerical solution. 

When the unknowns are the boundary vorticity values or the tangential velocity components 
to the boundary, one has to use the tangential form of the vector equation (15). i.e. 

~(t;)ri(() x u'(<) + t i ( ( )  x (Pu* *ti)u' dT = ti(<) x (VU* x t i )  x v' dT + ti(t) x 

(16) 
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or when the normal velocity components to the boundary are unknown, the normal form of 
the equation has to be employed, i.e. 

c(t)ii(r)* 45) -t ye). (OU* *ii)fi dT = ii(t)* (Pu* x ii) x fi dT + 35). D x OU* dn, (17) 

in order to obtain the appropriate non-singular implicit system of equations. 

4. NUMERICAL SOLUTION-KINETICS 

For the numerical solution of the kinetic equation the corresponding boundarydomain integral 
representation is written in a discretized form in which the integrals over the boundary and 
domain are approximated by a summation of integrals over individual boundary elements or 
internal cells respectively, e.g. in the general discretized representation of the integral equation 
(1 3),l l- l* 

where N, boundary elements and N, internal cells are employed. Next the variation in all field 
functions or the products of field functions within each boundary element or internal cell is 
approximated by the use of interpolation polynomials {a} and {cp} with respect to boundary 
or domain and nodal function values. Let the index n refer to the number of nodes in each 
boundary element or internal cell and also relate to the degree of the respective interpolation 
polynomials. It should be mentioned that the degree of interpolation polynomials on the 
boundary elements and in internal cells can differ. 

To solve equation (18), the implicit system of equations is written simultaneously for all 
boundary and internal points, resulting in a very large, fully populated system matrix which is 
influenced by diffusion and convection. The consequence of this fact is that the numerical scheme 
is very stable and accurate regardless of the Reynolds number values. 

The discretized form of the integral equation (18) can thus be written as 

where h, g and d,  represent integrals over boundary elements and internal cells respectively. 
Applying equation (19) to all boundary and internal nodes t = 1,. . . , m, the matrix equation 

is obtained when the vorticity is unknown (q is the diffusion flux), or 
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when the vorticity flux is unknown (q is the total flux = diffusion + convection). In symbolic 
matrix notation of an implicit non-linear system of m equations for all boundary and domain 
unknown values one can write 

where k stands for the iterative step. Accounting for the boundary conditions, e.g. known 
nodal vorticity values { w }  on rl and vorticity flux values {dw/dn}  on Tz (r = rl + rz), 
equation (22) can be reordered as 

[ A ] { X } ' + '  = { F , } .  (23) 

The system matrix [A]  is composed of the influence matrices [GI and [a, {X} is the vector of 
unknowns and {F,} is the right-hand-side term. 

Notice that the matrix [EJ  in equation (22) and the system matrix [A ]  in equation (23) are 
influenced by the velocity field and as such they have to be computed again at each particular 
iterative step. Since the order of the matrix [A] is very large and equal to the number of all 
boundary and internal points, it is desirable to avoid performing the triangularization step in 
the Gauss solution algorithm at each iterative step. This can be accomplished by partitioning 
the velocity field into known and unknown variable parts, e.g. {u,} = {fi,} + {ij,}, yielding from 
equation (20) the matrix statement 

[A ] {X} '+  = { F , }  + {FN(ij,, u)}'. (24) 

The system matrix [A] is now based on the known velocity field part {ij,} only and can be kept 
constant for several iterative steps. The influence of the variable velocity field part {C,} is included 
in the non-linear right-hand-side vector { FN}. i.e. 

1 
{FN} = - ([q(cal - c D , ] c c j l ) { O } .  (25) 

5. NUMERICAL SOLUTION-KINEMATICS 

For the numerical solution of the kinematic equation (1 5) the corresponding discretized form 
with analogy to the kinetics can be written as6*'**' 

c =  I c= 1 e- 1 

.= 1 c =  1 c =  1 

where an additional integral h, appears. Applying equations (26) to all bounury nodes, the 
following 2NE matrix systems are obtained: 

A system of NE equations for NE unknown boundary values can be readily derived by multiplying 
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the above two systems of equations by the unit tangent when the boundary vorticity or tangential 
velocity component is unknown, according to equation (16), i.e. 

and by multiplying by the unit normal when the normal velocity component is unknown, 
according to equation (17), i.e. 

CEaI{oJ = CF,I{ur) + CD,I{4. (29) 

The velocity components in the domain are then obtained explicitly for c({) = 1 as 

6. BOUNDARY CONDITIONS AND SOLUTION PROCEDURE 

The boundary conditions have a great influence on the behaviour of the numerical scheme. If 
they do not match the physics of the problem, the numerical scheme will not converge. 

The most natural and simplest boundary conditions arise when the velocity is known over 
all the boundary. In this case only the boundary vorticity values are unknown in the set of 
kinematic equations, assuming some initial values for the vorticity in the domain. The velocity 
field in the domain is then obtained by an explicit computation from the known vorticity field 
and prescribed boundary velocity values. The only unknowns which appear in the kinetic system 
of equations are therefore the vorticity flux and the domain vorticity and these can be easily 
obtained. 

More difficulties arise when the velocity is not known a prwri over part of the boundary 
(outflow region). In such a case a reasonable choice is to assume zero vorticity flux through the 
boundary and zero tangential component of the velocity. The unknowns which appear in the 
kinematics are therefore the boundary vorticity (where the velocity is prescribed) and the normal 
component of the velocity (where the vorticity flux is prescribed). In the kinetic part the 
unknowns are the vorticity flux (where the velocity is prescribed), the boundary vorticity (where 
the vorticity flux is prescribed) and the domain vorticity. 

A third type of boundary condition appears when symmetry is prescribed over part of the 
boundary. In this case the vorticity and the normal component of the velocity are zero. The 
unknowns that appear in the kinematic system are the boundary vorticity (where the velocity 
is prescribed) and the tangential component of the velocity (where the normal component is 
prescribed). In the kinetic part the unknowns are the vorticity flux (on all the boundary) and 
the domain vorticity. 

The kinematic relations and vorticity kinetic equation are coupled in a set of non-linear 
equations. An iterative point underrelaxation solution procedure has to be employed. The 
underrelaxation factor r depends on the Reynolds number and the mesh (a finer mesh implies 
a smaller value of r). To get a solution of the problem, one has to perform the following steps: 

1. Start with some initial values for vorticity. 
2. Kinematic part. 

(a) First type of BC- solve system for boundary values for vorticity. 
(b) Second type of BC-solve system for boundary values for vorticity and normal 

component of velocity. 
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(c) Third type of BC-solve system for boundary values for vorticity and tangential 

Calculate domain velocity components in an explicit manner. 

(a) First type of BC-solve system of equations for unknown boundary vorticity fluxes 

(b) Second type of BC-solve system of equations for unknown boundary vorticity, 

(c) Third type of BC-solve system of equations for unknown boundary vorticity fluxes 

4. Relax vorticity values and check convergence. If convergence criterion is satisfied, then 

component of velocity. 

3. Kinetic part. 

and domain vorticity values. 

vorticity fluxes and domain vorticity. 

and domain vorticity values. 

stop; otherwise go to step 2. 

7. TESTCASE 

The described BEM scheme has been tested on a standard test case to evaluate the numerical 
scheme. The test case is the well-known ‘driven cavity flow’ and it is used because there have 
been a lot of results obtained by other authors using different numerical approaches. As a 
benchmark solution of the problem, with which our results are compared, the work of Ghia ef 
al. l6 has been used. 

7.1. Discrete model 

The problem consists of a square cavity totally filled with an incompressible viscous fluid 
and a top wall moving with constant velocity. The geometry and boundary conditions are shown 
in Figure 1. In the discretized model, 160 mixed-type boundary elements are used with linear 
interpolation for the vorticity and constant interpolation for the vorticity flux. The reason for 
using a discontinuous approximation for the flux is the singularity of the corners, where the 
normal vector is not defined. Such a choice is also physically reasonable, because the vorticity 

1 
v, = 1 

z - 
01 1 

Figure 1 .  Geometry and boundary conditions 
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Figure 2. Discretized model 

H~ r- 

7 
+ 

Figure 3. Cavity flow nomenclature 

is continuous over the boundary but the vorticity flux can be different at comer points. For 
domain discretization, 1600 cells with bilinear interpolation have been used. There are 41 x 41 
nodes, which gives us a total of 1681 unknowns. The mesh was non-uniform, with ratio of 10 
between the largest and the smallest boundary element, and symmetric with respect to the centre 
of the cavity (Figure 2). 

Three cases were studied in this analysis: Re = 1000, 10,OOO and 15,000. Owing to the 
movement of the top wall, a large vortex appears in the central region and also small vortices 
at the comers. The primary vortex with its centre near the geometric centre of the cavity always 
appears, while the number, length and position of secondary vortices depend on Re. The 
nomenclature is given in Figure 3. 

7.2. Results 

The results of the analysis agree well with the benchmark solution, bearing in mind that 
the mesh density was 41 x 41 nodes while in the benchmark case there were 129 x 129 nodes 
for Re = lo00 and 257 x 257 nodes for Re = 10,OOO. The iteration process was stopped when 
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the residual error (square root of the residual vector for the kinetic equation) became less than 
1% of the initial error; 160 iterations were needed at Re = lo00 and 240 iterations at Re = 10,OOO 
to reach this error. However, for Re = 15,000 only 10% residual error had been reached after 
400 iterations. Owing to the very strong non-linearity which appears at high Re, a very small 
underrelaxation factor has to be used, such as r = 001 and r = 0001 for Re = 10oO,10,0oO and 
Re = 15,000 respectively. 

Table 1. Velocity u, along vertical line through centre of cavity 

R e =  lo00 Re = lO,o00 

Y BEM Benchmark BEM Benchmark 

1 *m 
0.9766 
0.9688 
0.9609 
0.953 1 
0.8516 
0.7344 
0.6172 
0.5ooo 
0.453 1 
0.28 13 
0.1719 
0.1016 
0.0703 
0.0625 
0.0547 
0.0000 

1 am0 
0.66420 
0.57798 
0.51229 
0.4673 1 
0.32704 
0.1 8460 
0.05620 

-0.05919 
- 0.1 0376 
-0.27357 
-0.36186 
-0.27803 
- 0.20955 
- 0 19108 
-0.1 7187 

0.00000 

1 ooo00 
0.65928 
0.57492 
0.5 11 17 
046604 
0.33304 
0.18719 
0.05702 

- OW80 
-0.10648 
- 0.27805 
-0'38289 
- 0'29730 
- 0.22220 
-0.20196 
- 0.18 109 
000000 

1 *om00 
0.42800 
043131 
0.44079 
0.44 142 
0-3 I847 
0- 1 9070 
0.08128 

-0.02155 
-006258 
-0.20715 
-030193 
- 0.35927 
-0.40219 
- 0.40450 
-0.39788 

0.00000 

1 *00000 
0.47221 
0.47783 
0.48070 
0.47804 
0.34635 
0.20673 
0.08344 

-0431 11 
-0.07540 
-0.23186 
-0.32709 
- 0.38OoO 
-0.41657 
-0,42537 
-0.42735 

0.00000 

Table 11. Velocity ug along horizontal line through centre of cavity 

R e =  loo0 Re = lO,o00 

X BEM Benchmark BEM Benchmark 

1 *m 
0.9688 
0.9609 
0.953 1 
0,9453 
0.9063 
0,8594 
0.8047 
0.5oo0 
0.2344 
0.2266 
0.1563 
0.0938 
0078 1 
0.0703 
0.0625 
0.m 

1 
- 0.199 14 
-0.25653 
-0'31002 
- 0'35944 
-0.48628 
- 0.4 1692 
- 0.3 1024 

0.01846 
0.30357 
0.31216 
0.36118 
0.33356 
0.3 1399 
030109 
028672 
000000 

1 ooo00 
- 0.2 1388 
-0.27669 
-0.33714 
-0.391 88 
-051550 
-0'42665 
- 0.3 1966 

OQ2526 
0.32235 
0.33075 
0.37095 
0.32627 
0.30353 
0.290 1 2 
0.27485 
000000 

1 ooooo 
-050722 
-0.50150 
- 0.46465 
-0.42775 
-0.40072 
-03261 5 
- 0.28221 

OQ1103 
0.24697 
0.2542 1 
0.32 1 5 1 
0.38697 
0.40385 
040576 
040405 
0.00000 

1 *m 
- 0 9 3 0 2  
-0.52987 
- 0.49099 
-0.45863 
- 0.41 496 
-0.36737 
-0.30719 

0w831 
0.27224 
0.28003 
0.35070 
0.4 1487 
0.43 124 
0.437 3 3 
0.43983 
0.00000 
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Table 111. Vorticity along moving boundary 

Re = lo00 Re = l0,OOO 

X BEM Benchmark BEM Benchmark 

O.oo00 
0-0625 
0.1250 
0.1875 
0.2500 
0.3125 
0.3750 
0.4375 
0.5000 
0.5625 
0.6250 
0.6975 
0.7500 
0.8125 
0.8750 
0.9375 
lo(x) 

- 

62.23349 
4585837 
37.64014 
30.74528 
24.7891 1 
20.07527 
16.83 105 
14.97980 
14.19961 
14.2 1 242 
14.76828 
15.80225 
17-85 182 
23.29794 
40.95456 
- 

- 
75-59800 
5 1 Q5570 
4054370 
32.29530 
25-434 10 
20.26660 
16.83500 
14.89010 
14.09280 
14.13740 
14.806 10 
16.04580 
18.31200 
23.87070 
43.1 1240 
- 

- 
124.55856 
103.2524 1 
93.651 13 
87.49921 
74.92 1 19 
61.08301 
46.61375 
46.08840 
3850391 
43.22482 
43.3 1565 
44.75240 
48.695% 
53.20258 
61.13929 
- 

- 
209.45200 
145.07300 
127.92800 
116.27500 
90.02310 
67.14000 
53.59050 
46.82710 
44032870 
44.63030 
46.8 57 20 
50.37920 
54.37250 
57.77560 
66.03520 
- 

Tables I and I1 give the results for the velocity u, and uy profiles through the geometric centre 
of the cavity respectively, while in Table I11 the vorticity values along the moving boundary are 
given. One can see in the tables that the BEM results are compared with the benchmark results, 
but it has to be mentioned that the BEM values are obtained by an interpolation procedure, 
because the numbers of BEM and benchmark nodes do not coincide owing to the different 
meshes used. 

There are large differences between the BEM and benchmark values for the vorticity along 
the moving boundary in Table 111. The reasons for this discrepancy are as follows. 

1. The mesh near the wall is much denser in the benchmark case than in the BEM, so the 
gradients of the velocity in the former case are better described. This can also be seen in 
the velocity profiles, where the differences are small away from the wall but larger close to 
the wall. 

2. One can see that the differences increase towards the comers. This occurs because the 
normal to the boundary cannot be properly defined, so some average value for the unit 
normal is used for computation of the normal component of the velocity in the kinematic 
equation. This source of error can be reduced by mesh refinement near the corners. 

The BEM numerical results for Re = 15,000 are not presented, because the grid was too sparse 
to appropriately describe the boundary layer. The results have only qualitative value and show 
that the numerical scheme is stable even when the discretized model is not adequate. 

Values for the streamline and vorticity contours which are used in the figures are presented 
in Table IV. It has to be noted that the streamline values are obtained when post-processing is 
performed on a known velocity field, because the h . 3  formulation is used, as against the 
benchmark solution with the $4 approach; thus the comparison for streamlines has to take this 
fact into account. 

Figure 4 presents velocity u, profiles along the vertical and Figure 5 velocity u, profiles along 
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Table IV. Values for streamline and vorticity contours 
in figures 

~~ 

Contour Value Value 
letter of * of 0 

A -1.0 x 10-10 0.0 
B -1.0 x 10-7 * 0 5  
C - 1.0 x 10-5 * 1.0 
D -1.0 x 10-4 f 2.0 
E -0.0100 * 3.0 
F - 0'0300 f 4.0 
G - 0.0500 * 5 0  
H - 00700 
1 - 0~0900 
J -O*lOOo 
K -0.1 100 
L -0.1150 
M - @ I  175 
N 1.0 x 10-8 
0 1.0 x lo-' 
P 1.0 x 1 0 - 6  

1.0 x 10-5 
5.0 1 0 - 5  

Q 
R 
S 1.0 x 10-4 
T 2.5 x 10-4 
U 5.0 x 10-4 
V 1.0 x 1 0 - 3  
W 1.5 x 1 0 - 3  
X 3.0 x 10-3 

a 4 m  

8.1" 

-a z n a a  

He = 1000 

I 

Figure 4. Comparison of velocity v, along vertical line through geometric centre (-, BEM; 0. benchmark) 
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I 

#amma #aman #oy #.u@n I W  #amm #aman a o y  #uy o.l@oW I "  
ODmlllAlt O D m I Y l E  

Re = 1000 Re = 10000 
Figure 5. Comparison of velocity up along horizontal line through geometric antre (-. BEM; 0, benchmark) 

the horizontal through the geometric centre of the cavity. Benchmark results are superimposed 
on the BEM solution. Streamline plots are presented in Figure 6, vorticity contours in Figure 
7, velocity fields in Figure 8 and vorticity surfaces in Figure 9. 

Properties of vortices for Re = loo0 and 10,OOO are presented in Table V and compared with 
those of the benchmark solution. It can be seen that the mesh of 41 x 41 nodes is too coarse 
for the appearance of second vortices at the bottom comers, while the results for primary and 
first secondary vortices compare quite well with the benchmark solution. 

8. CONCLUSION 

The boundary element method is applied to the numerical simulation of incompressible viscous 
fluid flow. The vorticity-velocity formulation is used to solve the fluid motion problem. 
Introducing the vorticity, the computation of the problem is partitioned into its kinematics and 
kinetics parts. The behaviour and physical meanings of the different terms in the integral 
equations are discussed. Owing to the fundamental solution, a part of the transport mechanism 
is transferred to the boundary, producing a very stable numerical scheme. Different degrees of 
interpolation for a function and its normal derivative were used to avoid problems with comers, 
where the normal to the boundary is not defined. Comparison of the BEM results with the 
benchmark solution shows good agreement, bearing in mind the relatively coarse grid. 

The weakness of the presented method is that the matrices are fully populated, not diagonally 
dominant and non-positive definite, so that special solvers cannot be used. The consequence of 
this is a very long computation time compared with other methods. This means that the described 
scheme in its present form is not applicable for problems where very fine discretization is required. 
However, BEM is a relatively new method and is developing fast. 

Extensive work on the 'subdomain technique' and the use of iterative solvers is currently in 
The influence of other types of Green functions on the stability of the numerical 

scheme is also being s t ~ d i e d . ' ~ . ~ ~  We believe that such an improved BEM will be competitive 
with other numerical methods in real applications. 
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Re = 1000 

Re = 10000 

Re = 15000 
Figure 6. Streamline patterns for primary and secondary vortices 
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R e =  1000 

Re = loo00 

Re = 15000 
Figure 7. Vorticity contours for flow in driven cavity 



z REK AND L. SKERGET 

..................... ................. ................. . . --- - - _ * . I  . - . - -  - - - * . .  

Re = 1000 

Re = 10000 

.............................. ) , I  ..................... " ' , , , I 1 1 1 1  
1 1 1 1 1 1 1 ~ ~ ~ ~ ~ ~  . . . . . .  ~ - * ~ , l l l l l l ~  

I l l l l l l l C 4  . . . . . . . . .  
1 1 l 1 1 1 1 1 1 1 1  . . . . . . . .  
. . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .  , , l l l / l , J I l <  .................................. .................. * . , , , , / , I / / ) , * '  ....... ~ . . . . . .  ,,',,//,,, ........ ~ ............. 

\\\\\. . - - - - - . - rr,,,, ....... - - - . - ...,,,, . .... - - - - < * . 0 ,  

Re = 15000 

FiguR 8. velocity field for flow in driven cavity 
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Figure 9. Vorticity surfaces for flow in driven cavity 
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Table V. Properties of primary and secondary vorticies 

R e =  loo0 Re = l0,ooO 

Vortex Property BEM Benchmark BEM Benchmark 

Primary 

First 
T 

First 
BL 

First 
BR 

Second 
BL 

Second 
BR 

-0113 
1.977 
0524,0565 

1.406 x 10-4 
- 0.283 
0079,0*065 
0216 
0136 
1.538 x 

0.854, 0.1 15 
0.289 
0437 

- 1.023 

-0118 
2049 
0.531. 0.562 

2.311 x lo-* 

0.086. 0.078 
0.219 
0,168 
1.751 x 

0,859, 0.109 
0303 
03536 

-0361 

- 1.155 

-9.319 x lo-' 
8.528 x 
0992,0008 
0008 
0008 

-0109 
1.784 
0514,0526 
2.136 x 

0079.0.904 
0159 
0.31 1 

- 1.863 

1.558 x 10-3  
-2.161 
0065, 0.159 
0382 
0.289 
3.758 x 

0.864, 0.079 
0382 
0438 

- 2.526 

_- 
- 
- 
- 
- 

-1.411 x lo-' 
0189 
0970.0.021 
0115 
0.115 

-01 19 
1.881 
0.512, 0533 
2.421 x 

0.070.0.914 
0159 
0320 
1.518 x lo-' 
0.058, 0.164 
0.344 
0289 
3.418 x 

0765, 0.058 
0391 
0449 

-7.756 x lo-' 
2754 x 10-2 
0.015, 0.019 
0.035 
0044 

-1.313 x 
3.125 x lo-' 
0933,0062 
0.170 
0137 

-2.183 

-2.085 

- 4.053 
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